HCF-1 amino- and carboxy-terminal subunit association through two separate sets of interaction modules: involvement of fibronectin type 3 repeats.
نویسندگان
چکیده
When herpes simplex virus infects permissive cells, the viral regulatory protein VP16 forms a specific complex with HCF-1, a preexisting nuclear protein involved in cell proliferation. The majority of HCF-1 in the cell is a complex of associated amino (HCF-1(N))- and carboxy (HCF-1(C))-terminal subunits that result from an unusual proteolytic processing of a large precursor polypeptide. Here, we have characterized the structure and function of sequences required for HCF-1(N) and HCF-1(C) subunit association. HCF-1 contains two matched pairs of self-association sequences called SAS1 and SAS2. One of these matched association sequences, SAS1, consists of a short 43-amino-acid region of the HCF-1(N) subunit, which associates with a carboxy-terminal region of the HCF-1(C) subunit that is composed of a tandem pair of fibronectin type 3 repeats, a structural motif known to promote protein-protein interactions. Unexpectedly, the related protein HCF-2, which is not proteolyzed, also contains a functional SAS1 association element, suggesting that this element does not function solely to maintain HCF-1(N) and HCF-1(C) subunit association. HCF-1(N) subunits do not possess a nuclear localization signal. We show that, owing to a carboxy-terminal HCF-1 nuclear localization signal, HCF-1(C) subunits can recruit HCF-1(N) subunits to the nucleus.
منابع مشابه
The HCF repeat is an unusual proteolytic cleavage signal.
The herpes simplex virus VP16-associated protein HCF is a nuclear host-cell factor that exists as a family of polypeptides encoded by a single gene. The mature HCF polypeptides are amino- and carboxy-terminal fragments of a large approximately 300-kD precursor protein that arise through cleavage at one or more centrally located sites. The sites of cleavage are the HCF repeats, highly conserved ...
متن کاملHCF-1 self-association via an interdigitated Fn3 structure facilitates transcriptional regulatory complex formation.
Host-cell factor 1 (HCF-1) is an unusual transcriptional regulator that undergoes a process of proteolytic maturation to generate N- (HCF-1(N)) and C- (HCF-1(C)) terminal subunits noncovalently associated via self-association sequence elements. Here, we present the crystal structure of the self-association sequence 1 (SAS1) including the adjacent C-terminal HCF-1 nuclear localization signal (NL...
متن کاملRole of the HCF-1 Basic Region in Sustaining Cell Proliferation
BACKGROUND The human herpes simplex virus-associated host cell factor 1 (HCF-1) is a conserved human transcriptional co-regulator that links positive and negative histone modifying activities with sequence-specific DNA-binding transcription factors. It is synthesized as a 2035 amino acid precursor that is cleaved to generate an amino- (HCF-1(N)) terminal subunit, which promotes G1-to-S phase pr...
متن کاملFibronectin's amino-terminal matrix assembly site is located within the 29-kDa amino-terminal domain containing five type I repeats.
Fibronectin is organized into disulfide cross-linked, insoluble pericellular matrix fibrils by fibroblasts in vitro. Two sites, the Arg-Gly-Asp-Ser-containing cell attachment domain and a site located in the first 70 kDa of fibronectin, are required for matrix assembly. The first 70 kDa of fibronectin contain two structural motifs termed type I and type II homologies, which are repeated nine an...
متن کاملAssociation of the type 1 inositol (1,4,5)-trisphosphate receptor with 4.1N protein in neurons.
The type 1 inositol (1,4,5)-trisphosphate receptor (InsP(3)R1) is an intracellular calcium (Ca(2+)) release channel that plays an important role in neuronal function. In yeast two-hybrid screen of rat brain cDNA library with the InsP(3)R1 carboxy-terminal bait we isolated multiple clones of neuronal cytoskeletal protein 4.1N. We mapped the 4.1N-interaction site to a short fragment (50 amino aci...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Molecular and cellular biology
دوره 20 18 شماره
صفحات -
تاریخ انتشار 2000